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ABSTRACT 

Background and objectives: Cyclophilin A (CypA) is involved in various human biological 

processes. Its role in many pathological conditions makes it a promising target for treating 

human diseases, such as viral infections. The aim of the present study was to investigate docking 

of CypA mutants with its potential inhibitors using molecular dynamic simulation ((MDS).  

Methods: The crystallographic structure of CypA was extracted from the protein database 

(PDB). Important CypA substitutions were obtained from the literature. CypA inhibitors were 

taken from chemical databases. The affinity and binding sites of the compounds to CypA and its 

mutants were also scaled through Autodock Vina. Root-mean-square deviation (RMSD), radios 

gyration, Lenard-jones potential, and hydrogen bonding were investigated by using MDS for 600 

ps. 

Results: The findings revealed that SangfA and HBF-0259 had more affinity to the CypA (-

7.8Kcal/mol and -7.5Kcal/mol, respectively). Conformational changes were observed in CypA 

W121A/F mutants. SangfA complexed with CypA and its mutants had relatively stable RMSD. 

Higher Lenard-Jones potential has been observed in the interaction of SangfA to W121A, HBF-

0259 to M61, and SCY-635 to H70F. The SangfA had a higher HBs ratio with CypA. 

Conclusion: Given the higher affinity of SangfA and HBF-0259 to CypA and its mutants, they 

would influence the stability of the protein. RMSD analysis revealed that SangfA is probably 

ligated to CypA and its mutants, which are relatively stable. Substitution at W121 residue would 

reduce inhibitor binding to CypA. 
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INTRODUCTION 

  Cyclophilin A (CypA) is a cytosolic protein 

with immunophilin and peptidyl-prolyl cis 

to trans isomerase (PPIase) activities, acting 

on the folding of proteins containing GP 

motif (1). The protein is comprised of two 

independent PPIase activity and drug 

binding domains (2). Some hydrophobic 

(R55) and hydrophilic residues (F60 and 

H126) are located in the CypA side chain, 

which is involved in the PPIase activity (2).  

The role of CypA in several important viral 

infections has been reviewed (3). As an 

immunophilin, CypA is the target of a few 

immunosuppressive drugs. For example, 

cyclosporin A (CsA) analog, SCY-635 has 

shown significant anti-hepatitis C virus 

(HCV) activity via suppressing viral 

replication and inducing innate immunity 

response (4–6). Therefore, the CypA ligand 

binding site is a potent target for drug 

discovery and treatment of human diseases 

(7,8). Antiviral effects of inhibitors make 

CypA a potent target for further specific 

drug discovery and development. 

  The ligand-binding site of CypA is a good 

target for drug discovery and investigation 

of the development of human viral 

infections. Immunosuppressive drugs, 

including CsA, SangfA, Alisporivir, NIH-

811, and SCY-635, can be used to fulfill this 

approach (9). Additionally, it has been 

predicted that HBF-0259 can bind to CypA 

and inhibit hepatitis B virus (HBV) surface 

antigen (HBsAg) secretion (9). However, the 

mechanism of action of those potential 

inhibitors is not known.  

  Molecular dynamic simulation (MDS) and 

molecular docking are two valuable 

approaches for predicting the binding of 

small molecules and their relative affinity to 

their targets (10). MDS provides 

measurements for the evaluation of receptor 

conformational and flexibility changes due 

to the binding of ligands. It also provides 

further tools for assessing the affinity of 

ligands to their receptors. Furthermore, 

molecular dynamics simulations have been  

used to evaluate the allosteric binding sites 

between the activator and CypA (11,12).  

Our study aims to investigate the effect of 

substitutions at CypA hydrophobic PPIase or 

ligand binding site domains on changes of 

CypA stability and its interaction energy 

with potential inhibitors in 600ps. 

MATERIALS AND METHODS 

Receptor/inhibitor preparations 

  The crystallographic structure of CypA 

(PDB ID: 1BCK) was provided from the 

Protein Data Bank 

(http://www.rcsb.org/pdb) (13,14). The 

structure was cleaned from non-specific 

residues and water molecules by using 

UCSF Chimera 1.10.2 (15). Chemical 

structure of known CypA inhibitors and 

ligands, cyclosporin (Csp), alisporivir, 

NIM811, SCY-635, and sanglifehrin A 

(Sangf-A), were obtained from the 

PubChem database (16). The chemical 

structure of HBF-0259 was computationally 

drawn as described previously (9). All 

structural energies were minimized using the 

Swiss-pdb Viewer (17). 

 Prediction of toxicity of CypA inhibitor 

  Toxicity Estimation Software Tool 

(T.E.S.T) has been used for predicting 

toxicity by applying 2D descriptors of the 

inhibitors (U.S. Environmental Protection 

Agency.) Accordingly, the pre-existed 

consensus method provided by the software 

was applied for analysis of Fathead minnow 

(Fm) LC50 (96hr), Daphnia magna (Dm) 

LC50 (48hr), Tetrahymena pyriformis (Tp) 

IGC50 (48hr), oral rat LD50, 

bioaccumulation factor (BioF), and 

developmental toxicity 

In silico site-specific mutagenesis and 

molecular docking 

  The Dunbrak rotamer library was used to 

substitute targeted amino acid residues with 

hydrophobic Phenylalanine. This change 

will have fewer structural movements before 

molecular docking and dynamic simulation 

(18,19). The most probable amino acid 

conformation provided by the UCSF 

Chimera software was used to substituting 
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desired amino acids. After mutagenesis, all 

atomic clashes were resolved using UCSF 

Chimera's energy minimization with its 

default settings. In addition to the previously 

described amino acids (9), two additional 

substitutions W121F and W121A were 

constructed, which have been reported to 

confer 75-200 fold CsA affinity reductions 

(20).  

  The Autodock Vina software was employed 

for the molecular docking study (21). The 

grid-box was coordinated to encompass the 

receptor (CypA) using the Autodock Tools 

1.5.6 (Molecular Graphics Laboratory, the 

Scripps Research Institute). Furthermore, 

the ligands were prepared for docking by 

using the Autodock Tool. 

Molecular dynamic simulation 

  The simulation of CypA in the presence 

and absence of ligand was performed using 

the GROMACS 5.1.4 software (22). The 

topology of the CypA was created using 

GROMACS utilities, whereas the topology 

of the ligand was generated using the 

PRODRG server in the framework of the 

GROMOS96 43a1 force field (23,24). All 

starting structures were solvated in a simple 

point charge water box under periodic 

boundary conditions using a 1.0nm distance 

from the protein to the box faces. The 

system was then neutralized by Cl- or Na+ 

ions. Following steepest descent energy 

minimization, the systems were equilibrated 

under NVT (constant number of particles, 

volume, and temperature) for 60ps at 300°K, 

followed by 60ps under NPT (constant 

number of particles, pressure, and 

temperature) conditions. The electrostatic 

interactions were treated using the Particle 

Mesh Ewald (PME) method. Finally, 0.6ns 

MD was performed to analyze the stability 

of each system. MD simulation was done on 

a Core i7 system containing NVidia 

GeForce Graphical Processing Unit (GPU). 

Statistical analysis 

  Variations of interaction energies and total 

affinity of inhibitors to CypA wild type and 

mutants were analyzed using the t-test. All 

statistical analyses were performed by using 

R statistics 3.3.1 packages at significance of 

0.05 (25). One-way ANOVA test was 

performed to evaluate variance variations of 

RMSD and radius of gyration (Rg) for CypA 

and its mutant in either unbounded or 

complex with the ligands. 

RESULTS 

Toxicity estimations 

  2D molecular structure of ligands was 

introduced to the TEST software for toxicity 

prediction. As shown in table 1, peptide-

based CypA inhibitors, Alisporivir, CsA, 

NIM-811, SCY-635, and SangfA have 

almost the same toxicity, and HBF-0259 has 

more toxicity properties. However, the 

evaluated toxicities were not significant. 
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Table 1. Toxicity prediction of CypA ligands 

Ligands Formula Fm 

(LC50) 

Dm 

(LC50) 

Tp 

(IGC50)

Oral rat 

(LD50) 

BioF DevT Mutagenicityc 

Alisporivira,b C63H113N11O12 6.93 4.74 4.98 3.43 0.48 1 0 

CsA C62H111N11O12 6.93 4.22 4.98 3.1 0.48 1 0 

HBF-0259 C17H13N4Cl2F 8.69 6.15 5.29 2.39 0.52 0.92 0.67 

NIM-811 C62H111N11O12 6.93 4.22 4.98 3.1 0.48 1 0 

SCY-635 C66H120N12O13S 6.93 4.28 N/Ad 3.43 N/A 0.67 0 

SangfA C60H91N5O13 6.93 4.31 N/A 2.38 0.38 0.67 0 

a -Log10(mol/L) 
b Predicted through the Nearest neighbor method. 

c Ames mutagenesis 
d Not applicable 

CypA mutant RMSD and radios gyration 

(Rg) variations 

Here, it was answered if the substitution of 

residues found in the binding site would 

cause any instability in CypA. For this 

purpose, RMSDs were compared to CypA as 

control. As shown in figure 1, the MD 

simulation of CypAs resulted in an increase 

in the RMSD over 10ns in most mutants. 

Among the variants, only W121A and 

W121F were relatively stable over time 

(P>0.0). Other substitutions had clear 

significant increasing states. Exceptionally, 

the R55F mutant had significantly declining 

RMSD (p<0.0001). 

The Rg in all structures was reduced in 

comparison with CypA (Figure 2). These 

variations were significant in substitutions 

G150F, K125F, and H70F. A decrease in Rg 

was continuous in two later substitutions 

over time. 
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Figure 1. RMSD analysis of CypA variants. RMSD of CypA and its mutants has evaluated 

with GROMACS. CypA_R55F had the maximum RMSD mean (0.133±0.024). Other RMSDs 

were 0.124±0.018, 0.12±0.019, 0.11±0.018, 0.11±0.015, 0.103±0.014, 0.12±0.018, 0.12±0.019, 

and 0.12±0.024 for CypA, CypA_FM, CypA_G150F, CypA_K125F, CypA_H70F, CypA_M61F, 

CypA_W121A, and CypA_W121F, respectively. RMSD mean differences of CypA and its 

variants were significant (F(8,900) = 19.7, p<0.0001). 
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Figure 2. The Rg of CypA and its mutants. There are significant changes in the Rg value of 

CypA and its mutants (F(8,900) = 22.96, p<0.0001 

Affinity of SangfA and HBF-0259 to 

CypA and its variants 

  Binding affinities of the potent CypA 

inhibitors are shown in figure 3. It was 

observed that SangfA and HBF-0259 had 

maximum affinities to CypA (-7.8Kcal/mol 

and -7.5Kcal/mol, respectively). SangfA had 

the highest interaction energy with 

CypA_R55F (-9.7Kcal/mol±0.252) and the 

lowest interaction energy with CypA_H70F 

(-7.8Kcal/mol). On the other hand, HBF-

0259 had higher binding energy to 

CypA_M61F (-8.3Kcal/mol±0.115)  

compared with other mutants (Figure 3).The 

difference of SangfA binding energy to 

CypA R55F mutant was statistically 

significant (p<0.001). Furthermore, HBF-

0259 mean binding affinity to CypA wild 

type was significantly lower than that to 

G150F (p<0.01), M61F (p<0.001), and 

R55F (p<0.01). Other inhibitors' affinity and 

related analyses have been shown in 

supplemented materials (Supp1). 
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Figure 3. Ligands affinity to CypA and its variants. The t-test was performed on ligands' 

affinities to CypA. Docking was performed in triplicate for evaluating reproducibility. 

Assessment of CypA stability in the 

presence of cognate inhibitors 

  Further analyses of CypA structural 

changes were evaluated using ligands with 

higher binding affinities (SangfA and HBF-

0259) compared to lower affinity (SCY-

635). As shown in figures 4A and 4B, 

RMSD and Rg increased and decreased, 

respectively. RMSD changes over MD were  

significant (F(2,300) = 25.265, p < 0.0001). 

However, Rg variance changes were not 

significant (F(2,300) = 1.105, p=0.33). 

Furthermore, MD simulation of CypA 

complexed with SangfA resulted in higher 

increased RMSD (0.1145±0.017). In 

addition, Rg was more decreased in the 

CypA complexed with SCY-635 

(1.34±0.005). 
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Figure 4. RMSD changes in CypA complexed with SangfA, HBF-0259, and SCY-635. B 

illustrates Rg variations of complexed CypA over 0.6ns. 

MDS analysis of mutants in complex with 

SangfA, HBF-0259, and SCY-635  

  RMSD analysis revealed that SangfA 

complexed with CypA and its mutants have 

relatively stable RMSD. HBF-0259 and 

SCY-635 have almost the same RMSD 

changes excepted inW121A, H70F, and 

R55F (Figure 5A). Figure 5B shows that Rg 

of CypA in G150 and H70 mutants docked 

with SCY-635 was lower than that of the  

wild-type receptor. Rg of HBF-0259 was 

higher than two other inhibitors and was at 

its peak in the G150 mutant. Furthermore, 

Rg amounts of CypA mutants complexed 

with SangfA had only minor changes 

(Figure 5B). Further RMSD data of ligands 

to other CypA mutants have been 

demonstrated separately in supplemented 

data (Supp2). 
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Figure 5. Mean RMSD (A) and Rg (B) changes in CypA mutants complexed with SangfA, 

HBF-0259, and SCY-635. 

  Higher Electrostatic and Leonard Jones 

Potential energies in the interaction of 

SangfA to CypA Potential interacting 

energies of the three ligands to CypA and its 

mutants were predicted (Table 2). Positive 

correlations have been observed in Vina 

results (after converting results from Kj/mol 

to Kcal/mol). Higher (greater negativity) 

Lenard-Jones potential (LJ) has been 

observed in the interaction of SangfA to 

W121A, HBF-0259 to M61, and SCY-635 

to H70F. However, G150F, H70F, and 

W121F had higher (more negativity) LJ 

potential for SangfA, HBF-0259, and SCY-

635. 
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Table 2. Potential interaction energy of SangfA, HBF-0259, and SCY-635 to the receptors 
SangfA HBF-0259 SCY-635 

Receptors LJa Electrob Totalc LJ Electro Total LJ Electro Total

CypA -338.948 -50.5292 -389.477 -131.168 -10.0851 -141.253 -218.584 -56.1166 -274.701 

CypA_FM -361.758 -33.6781 -395.436 -132.135 -8.36469 -140.5 -284.364 -20.6559 -305.02 

CypA_G150F -364.418 -39.5006 -403.919 -109.57 -12.1299 -121.7 -259.557 -24.3092 -283.866 

CypA_K125F -331.607 -48.7845 -380.392 -119.471 -14.0771 -133.548 -241.206 -94.3705 -335.577 

CypA_W121A -300.145 -43.904 -344.049 -119.067 -14.3043 -133.371 -211.879 -44.2877 -256.167 

CypA_W121F -342.182 -44.383 -386.565 -112.898 -2.7668 -115.665 -285.341 -22.0066 -307.348 

CypA_H70F -338.032 -45.4765 -383.509 -133.906 -10.7886 -144.695 -209.084 -73.2851 -282.369 

CypA_M61F -320.313 -30.6996 -351.013 -103.35 4.24988d -99.1001 -271.852 -33.2254 -305.077 

CypA_R55F -335.816 -60.5728 -396.389 -119.215 2.65239d -116.563 -250.626 -6.80832 -257.434 

a Lenard Jones Potential (Kj/mol) 
b Electrostatic Potential (Kj/mol) 

c Sum of LJ and Electro 
d Positive  electro energies 

 Hydrogen bonds between ligands and 

CypA  
  No hydrogen bonds (HB) existed between 

HBF-0259 or SCY-635 and CypA. T. 

Between SangfA and SCY-635, SangfA had 

a higher HBs ratio with CypA (75:1), G150 

(1.27:1), K125 (4.41:1), W121A (1.32:1), 

W121F (1.01:1), H70 (8.9:1), M61 

(10.14:1), and R55 (1.52:1) (Figure 6). 

Trajectories of complexes with more  

hydrogen bonding averages have been used 

for building complexed pdb files with Visual 

Molecular Dynamic (VMD) v1.9.3 (26) 

(Figure 7). HB analysis was performed 

using the UCSF Chimera 1.10.2 software 

(15).  In this regard, frame 58 with 3 HBs, 

frame 14 with one HB, and frame 56 

corresponding to the frame of CypA_FM 

with one HB have been selected for SangfA, 

SCY-635, and HBF-0259, respectively.
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Figure 6. Mean number of hydrogen bonds. Error bars are calculated by 1/10th of the 

standard deviation 
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Figure 7. Hydrogen bindings. A) Shows three HBs between Gly109 N and Ligand O166 

(2.289Å), Thr73 O and Ligand N (2.116Å), and Thr73 O and Ligand O (2.316Å). B) Illustrates 

HBF-0259 binding site within CypA. Residues that are involved in this electrostatic interaction 

are Lys154, H70, R55, and H54. C) A schematic representation of two HB between SCY-635 and 

CypA. In this model, Ala159 O (295Å) is involved in intermolecular interaction. 

DISCUSSION 

  CypA has an essential role in protein 

folding, transport and intracellular signaling. 

The importance of CypA has been studied in 

several viral infections. There are some 

known inhibitors, which have the potential 

to bind and inhibit CypA. However, their 

affinities, post-binding conformational and 

flexibility changes of CypA as well as their 

relative toxicities and interaction with the 

CypA mutants, remain unclear. The present 

study aimed to answer these questions.  

McGowan et al. used molecular dynamics 

simulations to study human CypA to 

understand the role of enzyme motions in 

the catalytic mechanism and recognition 

(27). They showed that A Trp121Phe 

mutation, which abolishes this hydrogen 

bonding interaction, causes CypA to bind 

cyclosporine with a much lower affinity 

(27). 

  The RMSD is a good measure for 

investigating structural similarities and 
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conformational changes in proteins of the 

same size (28). MD analysis of CypA 

showed a relative increase in RMSD in 

W121A and R55F substitutions compared to 

CypA itself over time. Two-way ANOVA 

was performed for investigating similarity 

changes in CypA conformation. In 

comparison to CypA, no significant 

conformational changes were observed in 

W121A/F mutants. Other substitutions had 

significant RMSD changes. W121A/F 

substitutions do not induce these 

conformational changes. Dietrich et al. 

reported that W121F substitution impairs the 

interaction of the viral protein to CypA (29). 

The residue also determines the binding of 

Csp to CypA (30). However, residues like 

R55 are known to be involved in the 

isomerase activity of CypA (31). Therefore, 

W121 substitution would be only involved 

in inhibitors binding to CypA. 

  The result of Autodock Vina showed 

SangfA and HBF-0259 had more affinities 

to the receptor. Accordingly, SangfA with 

389.477Kcal/mol total energy had the 

highest intermolecular interaction energy 

with CypA. Hydrogen bonding was 

observed in the complex of CypA and 

SangfA, which was not detected in HBF-

0259 and SCY-635. Oxygen and two 

nitrogen atoms of G109 and T73 were acting 

as H-donors in the complex of CypA and 

SangfA. These results show that SangfA is 

more potent than other known inhibitors to 

interact with CypA, and its interaction is 

supported by hydrogen bindings, 

electrostatic forces and hydrophobic effects. 

 SangfA, HBF-0259 and SCY-635 inhibitors 

were shown to increase RMSD and decrease 

Rg. The results also demonstrated that 

SangfA RMSD was significantly more 

stable than HBF-0259 and SCY-635. 

Evaluation of these three inhibitors indicated 

that CypA complexed with SangfA has more 

stable RMSD (p<0.05). This will support no 

significant conformational changes 

following SangfA and CypA interaction. 

  It is well-established that Rg can evaluate 

any modification in protein shape (32). This 

parameter provides information about 

protein flexibility. Accordingly, Rg values of 

different CypA mutants were compared to 

the protein itself. No flexibility changes 

were observed in W121A/F and R55F 

mutants. Notably, the Rg value in W121A 

was relatively decreased. Other substitutions 

had significant changes in Rg values. This is 

an indication of the limitation of main chain 

movement due to substitution. Besides, the 

flexibility of interacting molecules varied 

significantly, especially the chains involved 

in the interactions.   

  It has been shown that some unique CypA 

inhibitors could bind to the allosteric site of 

CypA, which is comprised of Cys52, His70, 

His54, Lys151, Thr152, and Lys155 residues 

(11). However, Arginine 55 residue is 

located in the active site of CypA, where it 

is involved in the protein PPIase activity (1). 

Therefore, it acts as an anchor for the 

substrate in the binding site by preferentially 

stabilizing the trans and cis isomers' 

transition state. Consequently, mutation of 

R55 would conduct at reduction of the 

catalytic efficiency (33). We assessed total 

interaction energy (Etot) by summing LJ and 

electrostatic potentials values. Our 

electrostatics potentials assessment showed 

that SangfA had more Etot to CypA (-

389.44Kj/mol). SangfA had higher Etot for 

CypA_K150F (-403.919) and lower Etot for 

W121A (-344.049). Since tryptophan 121 

residue is essential for the ligand-binding 

site of CypA (2), this might be a 

consequence of entropy changes during 

substitutions at the binding site of CypA. In 

this regard, Ladani et al. have shown that 

entropy changes lead to reduced free 

binding energy at CypA active site (34). 

CONCLUSION 

  Our results suggest that SangfA could be a 

more effective inhibitor for CypA. Its 

interaction with the CypA at the catalytic 

site does not induce significant vital changes 

and stability. It was also found that W121 is 

involved in ligand binding. This was 

supported by no significant impact of 
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W121A/F on CypA conformation and 

reduced interaction energy of SangfA to the 

CypA mutant. 
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