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ABSTRACT 

Background and objectives: Cancer stem cells (CSCs) may contribute to tumor initiation, 

distant metastasis, and chemo-resistance. Quaking (QKI) is a RNA binding protein, a tumor 

suppressor, and a well-known stem cell biomarker in central nervous system (CNS) cancer. The 

aim of this study was to identify the potential of QKI mRNA as a prognostic marker for CNS 

cancer. 

Methods: The Cancer Genome Atlas (TCGA) was investigated for gene expression profile 

within CNS cancer data.  Further analysis was done through cBioPortal and COSMIC to explore 

the QKI gene mutation(s). Moreover, QKI mRNA levels were evaluated by using SAGE Genie 

tools. The Kaplan-Meier Plotter was utilized to identify prognostic role of QKI mRNA levels in 

these cancers. 

Results: Higher levels of QKI mRNA were detected in brain cancer tissues. Altered QKI gene 

expression was observed in 2% (56/2,958) of patients. Missense QKI gene mutation rate was 

35.29%. The QKI gene alterations led to deleterious amino acid changes, including P181R, 

Q112P, and A220G. Altered QKI gene expression was significantly correlated with reduced 

survival rate (p<0.05). 

Conclusion: The QKI gene is most expressed in brain tissues. In patients with gliomas, altered 

QKI expression/mutation is associated with a shorter survival rate. The findings of this study 

indicate that the QKI gene mutations can be considered as a potential prognostic biomarker for 

brain malignancies. 

Keywords: Quaking; Biomarker; The Cancer Genome Atlas; neural inflammation disorders 
 _____________________________________________________________________________  

DOI: 10.29252/Jcbr.6.2.1 
How to Cite: Masoumeh Rostami, Azam Mirarab, Alireza Mohebbi. Quaking Gene 

Expression as a Prognostic Marker in Neural Inflammation Disorders. Journal of Clinical and 

Basic Research. 2022; 6 (2) :1-11 

 
 

 

 

 

 

 

 

https://orcid.org/0000-0002-4970-3925
https://orcid.org/0000-0001-7777-3341
https://orcid.org/0000-0003-2489-585X


Quaking Gene Expression as a Prognostic Marker…. 2 

 

INTRODUCTION 

  The extracellular matrix, mesenchymal 

stem cells, cancer-associated fibroblasts, 

endothelial cells, immune cells, and a 

complex network of cytokines and growth 

factors make up the tumor 

microenvironment (1). Tumor tissues are 

composed of a variety of cancer cells, 

including cancer stem cells (CSCs), which 

can differentiate into cancer cells (2,3). The 

stem cell niche is a milieu in which tissue-

specific stem cells in normal organs 

maintain their stemness. The most common 

and deadly primary brain tumor is 

glioblastoma (GBM). Glioma stem cells are 

thought to have a role in tumors' resistance 

to standard therapy. These cells have distinct 

surface markers, control specific signaling 

pathways, and play an important role in the 

development of glioma vessels (4,5). Niches 

have been identified in multiple cancers, and 

they often assimilate the signals of niches 

for the tissues from which the CSCs 

appeared (6,8). However, it is not 

understood how these cells still manage to 

preserve their nature when they invade and 

migrate from their homes to other areas 

where ideal niches are less likely to be 

available (9). 

  Brain tumors and metastases represent a 

heterogeneous set of conditions (10). 

Primary brain tumors such as astrocytic 

tumors, oligodendrogliomas, ependymomas, 

and mixed gliomas are all referred to as 

gliomas (11). Adults' most usual lethal brain 

tumor is grade IV glioma also known as 

GBM, with over 10,000 cases diagnosed 

annually in the United States (12). Evidence 

shows that a population of GBM cells has a 

stable ability to self-renew and produce new 

tumors that keep the features of original 

tumors (13,14).  

  The ability of stem cells to invade and 

migrate raises the question of how these 

cells maintain their stemness when they  

 

 

come into contact with varied ingredient 

compositions of a new microenvironment 

(15). Therefore, looking for genetic changes 

could help CSCs to keep stemness outside 

their niches (16). The Quaking gene (QKI), 

as a tumor suppressor gene, may 

poten¬tially affect CSC stemness. The gene 

encodes QKI, a STAR-family RNA-binding 

protein that is involved in RNA homeostasis 

(19,20). The RNA-binding protein QKI is 

highly expresses in brain cells (17), and play 

a regulatory role in brain development via 

modulating the stability of mRNAs that 

promote differentiation and inhibiting cell 

cycle progress (18). In the present study, the 

significance of QKI mRNA in human 

central nervous system (CNS) cancer was 

evaluated by using the Cancer Genome 

Atlas (TCGA) data portals.  

MATERIALS AND METHODS 

Analysis for QKI mutations 

  The Catalog of Somatic Mutations in 

Cancer (COSMIC) database was used to 

analyze QKI mutations (21). Pie charts were 

generated for a distribution survey and 

substitutions on the coding strand in CNS 

cancer. 

CBioPortal analysis for alteration 

frequency of QKI 

  Alteration frequency of QKI mRNA was 

performed using cBioPortal for Cancer 

Genomics (22,23). All searches were 

performed according to the cBioPortal’s 

online instructions.  The database query was 

based on mutation and altered expression of 

the QKI in six CNS/brain studies (Brain 

Low Grade Glioma (TCGA, Firehose 

Legacy), Brain Low Grade Glioma (TCGA 

PanCancer Atlas), GBM (TCGA, Cell 

2013), GBM (TCGA, Nature 2008), Low-

Grade Gliomas (UCSF, Science 2014), 

Merged Cohort of LCG and GBM (TCGA, 

Cell 2016), including 3010 samples of 2958 

patients (summarized in Figure 1). The 

overlapped studies were discarded.
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Figure 1. Summary of QKI gene alteration in glioma samples analyzed by cBioPortal 

Serial analysis of gene expression (SAGE) 

  All available published SAGE data were 

used to analyze QKI expression in normal 

and cancerous tissues. Digital QKI gene 

expression profiles were analyzed using 

SAGE Genie tools (24). 

Kaplan-Meier plotter analysis 

  The prognostic value of the QKI gene in 

CNS cancer was analyzed using the Kaplan-

Meier plotter (25) and PPISURV (26).  

Overall survival of the patient with high and 

low levels of QKI was shown by using a 

Kaplan-Meier survival plot. 

RESULTS 

QKI mutation in glioma 

  The information of mutations and mutation 

types were generated using cBioPortal. 

Mutation data for QKI were only provided 

in 17 patients (Table 1). Missense mutation 

rate was 35.29% (6/17). Furthermore, 

deletions resulting from frameshifts were 

observed in 29.41% (5/17) of mutant 

samples of glioma cancer. Missense 

mutations were  

 

G163984476 in 50% (3/6), G163956153 in 

33.33% (2/6), and C163899861 in 16.67% 

(1/6) of patients. Alteration frequency of 

QKI mutation in CNS cancer was analyzed 

by using cBioPortal. Moreover, 56 of 2,958 

(2%) patients had altered QKI gene. 

QKI mRNA in Glioma cancer tissues 

  The expression profile of QKI was found 

by using the SAGE Digital Gene Expression 

Display. Higher levels of QKI mRNA were 

mainly in the brain, spinal cord, breast, 

stomach, skin, and muscle cancer tissues, 

compared with their matched normal tissues 

(Figure 2).  

  No correlation was observed between the 

QKI gene expression and its relative protein 

copy numbers in different types of QKI gene 

alterations (Figure 3), while the opposite 

role of QKI mRNA was observed in CNS 

cancer (p=0.005). In addition, we analyzed 

the prognostic roles of QKI mRNA in 

subtypes of CNS cancer, and the results 

showed that QKI mRNA had no influence 

on mixed-type CNS cancer (p=0.14).
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Table 1. Altered QKI gene information in 17 patients 

Sample ID 

Cance

r type 

Cancer Type 

Detailed 

Protein 

Change 

Mutation 

Type 

Copy 

Variant 

Type 

Sex 

TCGA-28-

5208-01 
Glioma Diffuse Glioma V99Lfs*31 

Frame_Shift_

Del 
DEL Diploid Male 

TCGA-06-

0650-01 
Glioma Diffuse Glioma P181R 

Missense_Mut

ation 
SNP Diploid Female 

TCGA-06-

0155-01 
Glioma Diffuse Glioma Q112P 

Missense_Mut

ation 
SNP 

ShallowD

el 
Male 

TCGA-28-

5207-01 
Glioma Diffuse Glioma 

R256Kfs*1

8 

Frame_Shift_

Del 
DEL DeepDel Male 

TCGA-06-

0237-01 
Glioma Diffuse Glioma 

X312_splic

e 
Splice_Site DEL Gain Female 

TCGA-

OX-A56R-

01 

Glioma Diffuse Glioma E174del In_Frame_Del DEL 
ShallowD

el 
Male 

TCGA-FG-

5965-01 
Glioma Diffuse Glioma A220G 

Missense_Mut

ation 
SNP Diploid Female 

TCGA-FG-

5965-01 
Glioma 

Oligoastrocyto

ma 
A220G 

Missense_Mut

ation 
SNP Diploid Female 

TCGA-FG-

5965-01 

Diffuse 

Glioma 

Oligoastrocyto

ma 
A220G 

Missense_Mut

ation 
SNP Diploid Female 

TCGA-28-

5208-01 
Glioma 

Glioblastoma 

Multiforme 
V99Lfs*31 

Frame_Shift_

Del 
DEL Diploid Male 

TCGA-06-

0650-01 
Glioma 

Glioblastoma 

Multiforme 
P181R 

Missense_Mut

ation 
SNP Diploid Female 

TCGA-28-

5207-01 
Glioma 

Glioblastoma 

Multiforme 

R256Kfs*1

8 

Frame_Shift_

Del 
DEL DeepDel Male 

TCGA-06-

0237-01 
Glioma 

Glioblastoma 

Multiforme 

X312_splic

e 
Splice_Site DEL Gain Female 

TCGA-HT-

7689-01 

Diffuse 

Glioma 

Oligodendrogli

oma 

QKI-

AKAP7 
fusion 

FUSI

ON 

ShallowD

el 
Female 

TCGA-

DU-6404-

01 

Diffuse 

Glioma 

Oligodendrogli

oma 

PACRG-

QKI 
fusion 

FUSI

ON 
Diploid Female 

TCGA-HT-

8114-01 

Diffuse 

Glioma 

Oligoastrocyto

ma 

PACRG-

QKI 
fusion 

FUSI

ON 
Diploid Male 

TCGA-

WY-A859-

01 

Diffuse 

Glioma 
Astrocytoma NSD2-QKI fusion 

FUSI

ON 
Diploid Female 

 

Data includes six duplicate mutations in patients with multiple samples 
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Figure 2.  The alteration frequencies of the QKI gene across different cancer studies. Expression of 

the QKI gene was highest in brain (GTEx portal) (38). 

 

Figure 3.  The mRNA expression of QKI 
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Determination of QKI gene alterations 

across different cancers and overall 

survival rate 

  The QKI gene alterations (including 

mutations) led to amino acid changes with 

deleterious impacts on protein function. 

These included P181R, Q112P, and A220G. 

The QKI mutations and deletions were less 

frequent than amplifications in cancer 

patients. In addition, the QKI gene was 

notably amplified in several cancers, 

including stomach, skin, colon, and CNS 

cancers. In stomach cancer, QKI protein 

mutations were observed in 17 patients. 

  Further data showed significantly reduced 

overall survival rate of patients with altered 

QKI gene when compared to the unaltered 

group (Figure 4).

Figure 4.  Disease-free survival Kaplan-Meier estimate. Data show that patients with altered QKI gene 

had less overall survival (~6 years) than those with unaltered QKI gene (p=0.0291)

DISCUSSION 

  The niche is unique where preserved stem cells 

are undifferentiated and circulated through self-

renewal. As seen for somatic stem cells, many  

 

 

studies have identified a niche for CSCs that are 

important for preserving their self-renewal and 

promoting tumorigenesis (6,8).  However, these 
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seemingly specialized CSC niches are absent 

when CSCs invade other areas or tissues by 

various routes and metastasize to distant organs 

via circulation. This raises the question how 

CSCs keep their self-renewal power outside 

their niches. Shingu et al. showed that postnatal 

deletion of Pten and Trp53 could expand the 

neural stem cell (NSC) population in 

subventricular zones (SVZs). The lack of NSC 

self-renewal outside SVZs suggests the inability 

of NSCs to uphold self-renewal outside their 

niches, thereby preventing Pten−/−; Trp53−/− 

premalignant-NSCs from developing into 

gliomas. They also suggested that Qk deletion in 

Pten−/−; Trp53−/− premalignant-NSCs 

improved self-renewal, especially outside their 

niches, promoting gliomagenesis (3). 

  Previously, Zheng et al. showed that deletion 

of Pten and Trp53 in embryonic NSCs could 

raise sphere-forming capacity/stemness by 

upregulating Myc, leading to low-grade 

development and showing that embryonic 

development NSCs are more manageable to 

transform than postnatal NSCs (27). 

Nevertheless, in the model of Zheng et al. (with 

deletion of Pten and Trp53 in embryonic NSCs), 

GBM developed with a much more extended 

latency period (105 days versus 300 days) and 

lower penetrance (92% versus 25%), suggesting 

that other genetic or epigenetic changes still 

must be gained to allow embryonic premalignant 

neural stem cells to preserve self-renewal 

outside their niches, to per¬mit full progression 

of glioma. 

  The QKI gene has long been studied as a 

critical gene for oligodendrocyte differentiation 

and myelin formation (20,28). Other studies 

confirmed that QKI is needed for 

oligodendrocyte differentiation (3). This gene is 

also important for developing smooth muscle, 

endothelial cells, and monocytes or 

macrophages (20). In addition, QKI is expressed 

in NSCs and is a major regulator of self-renewal 

and differentiation.  It has been shown that QKI 

may regulate RNA homeostasis, including RNA 

stability, splicing, translation, miRNA 

processing, and circular RNA biogenesis 

(19,21).  

  In support of the importance of QKI as a tumor 

sup¬pressor, a previous analysis of the TCGA 

database of GBM demonstrated QKI as the sole 

gene within the small common region of the 

6q26 deletions (32% deletion rate and 1.7% 

mutation rate) (3,29). Furthermore, QKI 

downregulation by methylation of the QKI locus 

(chromosome 6, base 163,755,107) was also 
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reported in 50 of 250 (20%) GBM samples (30). 

In angiocentric glioma, nearly 90% of tumors 

have an MYB-QKI translocation, which disrupts 

QKI (31,32). Other than in gliomas, QKI is a 

tumor suppressor in other malignancies, 

including gastric (33), breast (34), colon (35), 

prostate (36), and oral (37) cancers. 

CONCLUSION 

  Expression of the QKI gene is highest in the 

brain tissue. Altered QKI gene 

expression/mutation is correlated with short 

survival rates in patients with gliomas. The 

results of the present study suggest that the QKI 

gene alteration could be considered as a novel 

prognosis biomarker for CNS/brain cancers. 
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